Electron Documentation1.7.9

Docs / API / app

app

Control your application’s event lifecycle.

Process: Main

The following example shows how to quit the application when the last window is closed:

const {app} = require('electron')
app.on('window-all-closed', () => {
  app.quit()
})

Events

The app object emits the following events:

Event: ‘will-finish-launching’

Emitted when the application has finished basic startup. On Windows and Linux, the will-finish-launching event is the same as the ready event; on macOS, this event represents the applicationWillFinishLaunching notification of NSApplication. You would usually set up listeners for the open-file and open-url events here, and start the crash reporter and auto updater.

In most cases, you should just do everything in the ready event handler.

Event: ‘ready’

Returns:

Emitted when Electron has finished initializing. On macOS, launchInfo holds the userInfo of the NSUserNotification that was used to open the application, if it was launched from Notification Center. You can call app.isReady() to check if this event has already fired.

Event: ‘window-all-closed’

Emitted when all windows have been closed.

If you do not subscribe to this event and all windows are closed, the default behavior is to quit the app; however, if you subscribe, you control whether the app quits or not. If the user pressed Cmd + Q, or the developer called app.quit(), Electron will first try to close all the windows and then emit the will-quit event, and in this case the window-all-closed event would not be emitted.

Event: ‘before-quit’

Returns:

Emitted before the application starts closing its windows. Calling event.preventDefault() will prevent the default behaviour, which is terminating the application.

Note: If application quit was initiated by autoUpdater.quitAndInstall() then before-quit is emitted after emitting close event on all windows and closing them.

Event: ‘will-quit’

Returns:

Emitted when all windows have been closed and the application will quit. Calling event.preventDefault() will prevent the default behaviour, which is terminating the application.

See the description of the window-all-closed event for the differences between the will-quit and window-all-closed events.

Event: ‘quit’

Returns:

Emitted when the application is quitting.

Event: ‘open-file’ macOS

Returns:

Emitted when the user wants to open a file with the application. The open-file event is usually emitted when the application is already open and the OS wants to reuse the application to open the file. open-file is also emitted when a file is dropped onto the dock and the application is not yet running. Make sure to listen for the open-file event very early in your application startup to handle this case (even before the ready event is emitted).

You should call event.preventDefault() if you want to handle this event.

On Windows, you have to parse process.argv (in the main process) to get the filepath.

Event: ‘open-url’ macOS

Returns:

Emitted when the user wants to open a URL with the application. Your application’s Info.plist file must define the url scheme within the CFBundleURLTypes key, and set NSPrincipalClass to AtomApplication.

You should call event.preventDefault() if you want to handle this event.

Event: ‘activate’ macOS

Returns:

Emitted when the application is activated. Various actions can trigger this event, such as launching the application for the first time, attempting to re-launch the application when it’s already running, or clicking on the application’s dock or taskbar icon.

Event: ‘continue-activity’ macOS

Returns:

Emitted during Handoff when an activity from a different device wants to be resumed. You should call event.preventDefault() if you want to handle this event.

A user activity can be continued only in an app that has the same developer Team ID as the activity’s source app and that supports the activity’s type. Supported activity types are specified in the app’s Info.plist under the NSUserActivityTypes key.

Event: ‘new-window-for-tab’ macOS

Returns:

Emitted when the user clicks the native macOS new tab button. The new tab button is only visible if the current BrowserWindow has a tabbingIdentifier

Event: ‘browser-window-blur’

Returns:

Emitted when a browserWindow gets blurred.

Event: ‘browser-window-focus’

Returns:

Emitted when a browserWindow gets focused.

Event: ‘browser-window-created’

Returns:

Emitted when a new browserWindow is created.

Event: ‘web-contents-created’

Returns:

Emitted when a new webContents is created.

Event: ‘certificate-error’

Returns:

Emitted when failed to verify the certificate for url, to trust the certificate you should prevent the default behavior with event.preventDefault() and call callback(true).

const {app} = require('electron')

app.on('certificate-error', (event, webContents, url, error, certificate, callback) => {
  if (url === 'https://github.com') {
    // Verification logic.
    event.preventDefault()
    callback(true)
  } else {
    callback(false)
  }
})

Event: ‘select-client-certificate’

Returns:

Emitted when a client certificate is requested.

The url corresponds to the navigation entry requesting the client certificate and callback can be called with an entry filtered from the list. Using event.preventDefault() prevents the application from using the first certificate from the store.

const {app} = require('electron')

app.on('select-client-certificate', (event, webContents, url, list, callback) => {
  event.preventDefault()
  callback(list[0])
})

Event: ‘login’

Returns:

Emitted when webContents wants to do basic auth.

The default behavior is to cancel all authentications, to override this you should prevent the default behavior with event.preventDefault() and call callback(username, password) with the credentials.

const {app} = require('electron')

app.on('login', (event, webContents, request, authInfo, callback) => {
  event.preventDefault()
  callback('username', 'secret')
})

Event: ‘gpu-process-crashed’

Returns:

Emitted when the gpu process crashes or is killed.

Event: ‘accessibility-support-changed’ macOS Windows

Returns:

Emitted when Chrome’s accessibility support changes. This event fires when assistive technologies, such as screen readers, are enabled or disabled. See https://www.chromium.org/developers/design-documents/accessibility for more details.

Methods

The app object has the following methods:

Note: Some methods are only available on specific operating systems and are labeled as such.

app.quit()

Try to close all windows. The before-quit event will be emitted first. If all windows are successfully closed, the will-quit event will be emitted and by default the application will terminate.

This method guarantees that all beforeunload and unload event handlers are correctly executed. It is possible that a window cancels the quitting by returning false in the beforeunload event handler.

app.exit([exitCode])

Exits immediately with exitCode. exitCode defaults to 0.

All windows will be closed immediately without asking user and the before-quit and will-quit events will not be emitted.

app.relaunch([options])

Relaunches the app when current instance exits.

By default the new instance will use the same working directory and command line arguments with current instance. When args is specified, the args will be passed as command line arguments instead. When execPath is specified, the execPath will be executed for relaunch instead of current app.

Note that this method does not quit the app when executed, you have to call app.quit or app.exit after calling app.relaunch to make the app restart.

When app.relaunch is called for multiple times, multiple instances will be started after current instance exited.

An example of restarting current instance immediately and adding a new command line argument to the new instance:

const {app} = require('electron')

app.relaunch({args: process.argv.slice(1).concat(['--relaunch'])})
app.exit(0)

app.isReady()

Returns Boolean - true if Electron has finished initializing, false otherwise.

app.focus()

On Linux, focuses on the first visible window. On macOS, makes the application the active app. On Windows, focuses on the application’s first window.

app.hide() macOS

Hides all application windows without minimizing them.

app.show() macOS

Shows application windows after they were hidden. Does not automatically focus them.

app.getAppPath()

Returns String - The current application directory.

app.getPath(name)

Returns String - A path to a special directory or file associated with name. On failure an Error is thrown.

You can request the following paths by the name:

app.getFileIcon(path[, options], callback)

Fetches a path’s associated icon.

On Windows, there a 2 kinds of icons:

On Linux and macOS, icons depend on the application associated with file mime type.

app.setPath(name, path)

Overrides the path to a special directory or file associated with name. If the path specifies a directory that does not exist, the directory will be created by this method. On failure an Error is thrown.

You can only override paths of a name defined in app.getPath.

By default, web pages’ cookies and caches will be stored under the userData directory. If you want to change this location, you have to override the userData path before the ready event of the app module is emitted.

app.getVersion()

Returns String - The version of the loaded application. If no version is found in the application’s package.json file, the version of the current bundle or executable is returned.

app.getName()

Returns String - The current application’s name, which is the name in the application’s package.json file.

Usually the name field of package.json is a short lowercased name, according to the npm modules spec. You should usually also specify a productName field, which is your application’s full capitalized name, and which will be preferred over name by Electron.

app.setName(name)

Overrides the current application’s name.

app.getLocale()

Returns String - The current application locale. Possible return values are documented here.

Note: When distributing your packaged app, you have to also ship the locales folder.

Note: On Windows you have to call it after the ready events gets emitted.

app.addRecentDocument(path) macOS Windows

Adds path to the recent documents list.

This list is managed by the OS. On Windows you can visit the list from the task bar, and on macOS you can visit it from dock menu.

app.clearRecentDocuments() macOS Windows

Clears the recent documents list.

app.setAsDefaultProtocolClient(protocol[, path, args]) macOS Windows

Returns Boolean - Whether the call succeeded.

This method sets the current executable as the default handler for a protocol (aka URI scheme). It allows you to integrate your app deeper into the operating system. Once registered, all links with your-protocol:// will be opened with the current executable. The whole link, including protocol, will be passed to your application as a parameter.

On Windows you can provide optional parameters path, the path to your executable, and args, an array of arguments to be passed to your executable when it launches.

Note: On macOS, you can only register protocols that have been added to your app’s info.plist, which can not be modified at runtime. You can however change the file with a simple text editor or script during build time. Please refer to Apple’s documentation for details.

The API uses the Windows Registry and LSSetDefaultHandlerForURLScheme internally.

app.removeAsDefaultProtocolClient(protocol[, path, args]) macOS Windows

Returns Boolean - Whether the call succeeded.

This method checks if the current executable as the default handler for a protocol (aka URI scheme). If so, it will remove the app as the default handler.

app.isDefaultProtocolClient(protocol[, path, args]) macOS Windows

Returns Boolean

This method checks if the current executable is the default handler for a protocol (aka URI scheme). If so, it will return true. Otherwise, it will return false.

Note: On macOS, you can use this method to check if the app has been registered as the default protocol handler for a protocol. You can also verify this by checking ~/Library/Preferences/com.apple.LaunchServices.plist on the macOS machine. Please refer to Apple’s documentation for details.

The API uses the Windows Registry and LSCopyDefaultHandlerForURLScheme internally.

app.setUserTasks(tasks) Windows

Adds tasks to the Tasks category of the JumpList on Windows.

tasks is an array of Task objects.

Returns Boolean - Whether the call succeeded.

Note: If you’d like to customize the Jump List even more use app.setJumpList(categories) instead.

app.getJumpListSettings() Windows

Returns Object:

app.setJumpList(categories) Windows

Sets or removes a custom Jump List for the application, and returns one of the following strings:

If categories is null the previously set custom Jump List (if any) will be replaced by the standard Jump List for the app (managed by Windows).

Note: If a JumpListCategory object has neither the type nor the name property set then its type is assumed to be tasks. If the name property is set but the type property is omitted then the type is assumed to be custom.

Note: Users can remove items from custom categories, and Windows will not allow a removed item to be added back into a custom category until after the next successful call to app.setJumpList(categories). Any attempt to re-add a removed item to a custom category earlier than that will result in the entire custom category being omitted from the Jump List. The list of removed items can be obtained using app.getJumpListSettings().

Here’s a very simple example of creating a custom Jump List:

const {app} = require('electron')

app.setJumpList([
  {
    type: 'custom',
    name: 'Recent Projects',
    items: [
      { type: 'file', path: 'C:\\Projects\\project1.proj' },
      { type: 'file', path: 'C:\\Projects\\project2.proj' }
    ]
  },
  { // has a name so `type` is assumed to be "custom"
    name: 'Tools',
    items: [
      {
        type: 'task',
        title: 'Tool A',
        program: process.execPath,
        args: '--run-tool-a',
        icon: process.execPath,
        iconIndex: 0,
        description: 'Runs Tool A'
      },
      {
        type: 'task',
        title: 'Tool B',
        program: process.execPath,
        args: '--run-tool-b',
        icon: process.execPath,
        iconIndex: 0,
        description: 'Runs Tool B'
      }
    ]
  },
  { type: 'frequent' },
  { // has no name and no type so `type` is assumed to be "tasks"
    items: [
      {
        type: 'task',
        title: 'New Project',
        program: process.execPath,
        args: '--new-project',
        description: 'Create a new project.'
      },
      { type: 'separator' },
      {
        type: 'task',
        title: 'Recover Project',
        program: process.execPath,
        args: '--recover-project',
        description: 'Recover Project'
      }
    ]
  }
])

app.makeSingleInstance(callback)

Returns Boolean.

This method makes your application a Single Instance Application - instead of allowing multiple instances of your app to run, this will ensure that only a single instance of your app is running, and other instances signal this instance and exit.

callback will be called by the first instance with callback(argv, workingDirectory) when a second instance has been executed. argv is an Array of the second instance’s command line arguments, and workingDirectory is its current working directory. Usually applications respond to this by making their primary window focused and non-minimized.

The callback is guaranteed to be executed after the ready event of app gets emitted.

This method returns false if your process is the primary instance of the application and your app should continue loading. And returns true if your process has sent its parameters to another instance, and you should immediately quit.

On macOS the system enforces single instance automatically when users try to open a second instance of your app in Finder, and the open-file and open-url events will be emitted for that. However when users start your app in command line the system’s single instance mechanism will be bypassed and you have to use this method to ensure single instance.

An example of activating the window of primary instance when a second instance starts:

const {app} = require('electron')
let myWindow = null

const isSecondInstance = app.makeSingleInstance((commandLine, workingDirectory) => {
  // Someone tried to run a second instance, we should focus our window.
  if (myWindow) {
    if (myWindow.isMinimized()) myWindow.restore()
    myWindow.focus()
  }
})

if (isSecondInstance) {
  app.quit()
}

// Create myWindow, load the rest of the app, etc...
app.on('ready', () => {
})

app.releaseSingleInstance()

Releases all locks that were created by makeSingleInstance. This will allow multiple instances of the application to once again run side by side.

app.setUserActivity(type, userInfo[, webpageURL]) macOS

Creates an NSUserActivity and sets it as the current activity. The activity is eligible for Handoff to another device afterward.

app.getCurrentActivityType() macOS

Returns String - The type of the currently running activity.

app.setAppUserModelId(id) Windows

Changes the Application User Model ID to id.

app.importCertificate(options, callback) LINUX

Imports the certificate in pkcs12 format into the platform certificate store. callback is called with the result of import operation, a value of 0 indicates success while any other value indicates failure according to chromium net_error_list.

app.disableHardwareAcceleration()

Disables hardware acceleration for current app.

This method can only be called before app is ready.

app.disableDomainBlockingFor3DAPIs()

By default, Chromium disables 3D APIs (e.g. WebGL) until restart on a per domain basis if the GPU processes crashes too frequently. This function disables that behaviour.

This method can only be called before app is ready.

app.getAppMemoryInfo() Deprecated

Returns ProcessMetric[]: Array of ProcessMetric objects that correspond to memory and cpu usage statistics of all the processes associated with the app. Note: This method is deprecated, use app.getAppMetrics() instead.

app.getAppMetrics()

Returns ProcessMetric[]: Array of ProcessMetric objects that correspond to memory and cpu usage statistics of all the processes associated with the app.

app.getGpuFeatureStatus()

Returns GPUFeatureStatus - The Graphics Feature Status from chrome://gpu/.

app.setBadgeCount(count) Linux macOS

Returns Boolean - Whether the call succeeded.

Sets the counter badge for current app. Setting the count to 0 will hide the badge.

On macOS it shows on the dock icon. On Linux it only works for Unity launcher,

Note: Unity launcher requires the existence of a .desktop file to work, for more information please read Desktop Environment Integration.

app.getBadgeCount() Linux macOS

Returns Integer - The current value displayed in the counter badge.

app.isUnityRunning() Linux

Returns Boolean - Whether the current desktop environment is Unity launcher.

app.getLoginItemSettings([options]) macOS Windows

If you provided path and args options to app.setLoginItemSettings then you need to pass the same arguments here for openAtLogin to be set correctly.

Returns Object:

Note: This API has no effect on MAS builds.

app.setLoginItemSettings(settings) macOS Windows

Set the app’s login item settings.

To work with Electron’s autoUpdater on Windows, which uses Squirrel, you’ll want to set the launch path to Update.exe, and pass arguments that specify your application name. For example:

const appFolder = path.dirname(process.execPath)
const updateExe = path.resolve(appFolder, '..', 'Update.exe')
const exeName = path.basename(process.execPath)

app.setLoginItemSettings({
  openAtLogin: true,
  path: updateExe,
  args: [
    '--processStart', `"${exeName}"`,
    '--process-start-args', `"--hidden"`
  ]
})

Note: This API has no effect on MAS builds.

app.isAccessibilitySupportEnabled() macOS Windows

Returns Boolean - true if Chrome’s accessibility support is enabled, false otherwise. This API will return true if the use of assistive technologies, such as screen readers, has been detected. See https://www.chromium.org/developers/design-documents/accessibility for more details.

app.setAboutPanelOptions(options) macOS

Set the about panel options. This will override the values defined in the app’s .plist file. See the Apple docs for more details.

app.commandLine.appendSwitch(switch[, value])

Append a switch (with optional value) to Chromium’s command line.

Note: This will not affect process.argv, and is mainly used by developers to control some low-level Chromium behaviors.

app.commandLine.appendArgument(value)

Append an argument to Chromium’s command line. The argument will be quoted correctly.

Note: This will not affect process.argv.

app.enableMixedSandbox() Experimental macOS Windows

Enables mixed sandbox mode on the app.

This method can only be called before app is ready.

app.dock.bounce([type]) macOS

When critical is passed, the dock icon will bounce until either the application becomes active or the request is canceled.

When informational is passed, the dock icon will bounce for one second. However, the request remains active until either the application becomes active or the request is canceled.

Returns Integer an ID representing the request.

app.dock.cancelBounce(id) macOS

Cancel the bounce of id.

app.dock.downloadFinished(filePath) macOS

Bounces the Downloads stack if the filePath is inside the Downloads folder.

app.dock.setBadge(text) macOS

Sets the string to be displayed in the dock’s badging area.

app.dock.getBadge() macOS

Returns String - The badge string of the dock.

app.dock.hide() macOS

Hides the dock icon.

app.dock.show() macOS

Shows the dock icon.

app.dock.isVisible() macOS

Returns Boolean - Whether the dock icon is visible. The app.dock.show() call is asynchronous so this method might not return true immediately after that call.

app.dock.setMenu(menu) macOS

Sets the application’s dock menu.

app.dock.setIcon(image) macOS

Sets the image associated with this dock icon.


See something that needs fixing? Propose a change on the source.
Need a different version of the docs? See the available versions or community translations.
Want to search all the documentation at once? See all of the docs on one page.